
Release Management
From Packages to Production

Philip J. Hollenback
philiph@yahoo-inc.com

April 2011



Hi There

Yahoo! Mail
maybe you’ve heard of it?

Release Management
we install the softwares
supported by many others in Service Engineering



Environment

10k freebsd machines
Other teams handle the hardware
We focus on just the software installs



Houston?

Core mail backend servers means lots of legacy code
About 1500 software packages

Mail must be 100% reliable
People expect email to always be available

It’s hard to load test mail service



Solution

Distributed, cached software repositories with dist
Keep system state in Igor
Assemble releases with SRM
Massively parallel pushes with Pogo
Rigorous release cycle
DO IT FAST

(3 week release timeline)



Release Philosophy

All Packages All Environments
Packages must be installed on all servers of a given type
Only way we can properly test releases
Any other solution leads to many separate ’releases’



Which brings us to. . .





Release Trains

Start a new train every 3 weeks
Release Management and QA hand release back and forth
Release assembly with SRM
QA does integration
QA final test & signoff
Push to Prod in about a week (with Pogo)

That’s 10k hosts worldwide, folks



Delays?

Train delays suck
See the part about DOING IT FAST

too much backup means we cancel
roll changes into next train

QA is limiting factor



Massively Parallel Pushes

Launch software push on lots of hosts at once
but with constraints & healthcheck

Starting a push to about 3000 hosts

$ pogo run -R Train_34 -I @mail.farm.xset.deploy-stage4-us
Password:
p0000031421; http://pogo.corp.yahoo.com/p0000031421
status: running: constraints computed





Job Complete

10 hours to push to just over 3000 servers:

End of Push

CMR completed successfully
Start Wed Apr 13 2011 22:24:45 GMT-0700 (PDT)
End Thu Apr 14 2011 08:24:44 GMT-0700 (PDT) (+10h0s)
Total Hosts : 3046 (Skipped 36 invalid hosts)
Finished : 3038
Completion % : 99.73%

ps - open source pogo can be found at github.com/nrh/pogo

https://github.com/nrh/pogo/


Yes, We Do Rollbacks

Rigorous Release Testing
forward and backward
bare metal

Full rollback roughly every 6 months



What Works

massively parallel pushes
rollback
rigorous release testing



Challenges

getting developers to care about old code
package quality, install/remove scripts
separating bugfix and feature trains
moving settings to central config servers



To Sum It Up

DON’T BE CLEVER!

Install the same packages everywhere
Test releases thoroughly before rollout
The simple approach is most likely to succeed



Thanks for Listening!

Phil Hollenback
philiph@yahoo-inc.com

@philiph
www.hollenback.net

This Is A Team Effort
Jen Draper
Jerrod Kensil
Brian McNeff
Joon Kim

Shajeeb Muhammad
Prem Ramnath
Tisha Emmanuel
Pradipta Ghosh

mailto:philiph@yahoo-inc.com
http://www.twitter.com/philiph
http://www.hollenback.net


Any Questions?


	Introduction
	Environment
	Big Problem
	Solution
	Trains
	Push Process
	Analysis
	Conclusion

